19 entries, filtered by: Sensors
Published: March 2010

Sub-wavelength structures in metal films have interesting optical properties that can be implemented for sensing applications: gratings act as wire grid polarizer, hole arrays with enhanced transmission can be used as spectral filters. This paper demonstrates the feasibility of these nanostructures using 180 nm and 90 nm complementary metal-oxide semiconductor (CMOS) processes. The metal layers of the process can be used for optical nanostructures with feature sizes down to 100 nm.


More
Published: September 2006

An infrared focal plane array with 16 x 8 pixels is presented. The not-cooled thermopile sensor array has been completely fabricated in CMOS technology. The main field of application of this sensor is to detect the presence of persons in buildings by their own thermal radiation. For a wide spread use of this sensor a low cost production with established CMOS technologies is necessary. The chip embraces the sensor pixels and highly integrated electronic circuits to allow a simple sensor interfacing.


More
Published: September 2005

This paper presents the results of a three and a half year R&D project for low cost micromachined gyroscopes. As starting point of this work the application requirements of enhanced automotive applications such as Advanced Driving Assistant Systems (ADAS) are given. Based on these demands the sensor development is carried out.


More
Published: January 2010

Get an overview of the optical functions and features available as part of X-FABs More-than-Moore technology offering, including the impacts on spectral sensitivity, signal bandwidth, and noise margins. Explore what you need to consider when starting to design your optical product.


More
Published: October 2010

In the past five years we have seen a huge step in the evolution of MEMS applications. Some may even call it a revolution. Traditionally, Inkjet printer heads and automotive applications have dominated MEMS volume production. Today, demand for MEMS is particularly high in the consumer and mobile sector with further applications appearing every day. Part of this MEMS revolution has been the changing requirements for associated ASIC CMOS intelligence. Many manufacturers who currently use discrete MEMS devices are now seeing the benefits of integrated CMOS.


More
Published: December 2010

This free webinar introduces X-FAB’s Hall effect sensor device that detects and measures magnetic fields directly on the chip, making magnetic field-sensing design much faster. You’ll learn how the Hall sensor element – available as a completely characterized building block in X-FAB’s 0.18 micrometer modular high-voltage technology, XH018 – can be combined with other features of the XH018 process to enable a broad range of applications. For example, contactless detection or measurement of magnetic fields, and applications in which a magnetic field is used for indirect measurement of distance, position, rotational angle, speed or an electric current.


More
Published: June 2012

Sensors are everywhere, serving as an interface between our analog world and the digital world of data processing in electronic systems. Is your design challenge – making sensor output signals available to complex digital systems – further complicated by the need for low noise, temperature-dependent behavior and non-linear effects? If you are looking for solutions for low noise amplification and temperature drift, non-linearity or signal offset compensation, don’t miss this free webinar. It helps designers select the right technology for low-noise and high-precision sensor interfaces. You’ll get tips for achieving excellent matching for robust circuits, and see how X-FAB’s sophisticated modelling enables first-time-right analog and mixed-signal designs.


More
Published: September 2012

Ever been stuck with the “one product, one process” rule when what you really needed was access to a world-class quality process for multiple applications? Not anymore.
X-FAB is presenting a webinar on its open-platform MEMS inertial sensor processes including its new 3D inertial sensor technology. Learn how you can use X-FAB’s design partner, MicroMountains Applications, or apply your own design to X-FAB’s ready-to-use processes to run high or low wafer volumes without long and costly process development. Find out how X-FAB can help you get to market faster and secure high-quality manufacturing for inertial sensors. You’ll get an overview of both inertial sensor technologies and IP blocks from X-FAB, as well as design and test support from MicroMountains Applications.


More
Published: May 2013

What happens when optical signals are converted to electrical signals? Focusing on the optical to electrical conversion process, this webinar sheds some light on the basics of light interaction from reflection, transmission, polarization and refraction to absorption with semiconductors devices. It explores electrical fields, recombination and lifetime, doping profiles, band structures and pn-junctions to determine what happens when light has been converted into electron-hole pairs. This webinar provides a solid overview of passive and active optical sensor elements manufactured in a mixed-signal CMOS process or added during post processing


More