22 entries, filtered by: SOI
Published: September 2013

Showing first-time-right performance statistics from X-FAB's customer base, this first session outlines the challenges involved in achieving first-time-right analog designs. It talks about what impact the choice of process architecture makes, and discusses the pros and cons of different process architectures including SOI and BCD.


More
Published: July 2013

XDH10 is X-Fab´s dielectric trench insulated smart power technology. Main target applications are analog switch ICs, driver ICs for capacitive, inductive and resistive loads and EL / piezo driver ICs for applications using 220V net supply. The typical breakdown voltage of the HV DMOS devices is >350V or >650V. The modular process combines DMOS, bipolar and CMOS processing steps that are compatible with dielectric insulation to provide a wide variety of MOS and bipolar devices with different voltage levels within a dielectric bi-directional high voltage trench insulation on the same die.


More
Published: May 2013

This paper demonstrates a novel lateral superjunction (SJ) lateral insulated gate bipolar transistor (LIGBT) fabricated in 0.18μm partial silicon on insulator (PSOI) HV process. The results presented are based on extensive experimental measurements and numerical simulations.


More
Published: May 2013

This paper presents versatile HV lateral JFET design method on 0.18μm SOI BCD technology to achieve variable Vth(pinch-off voltage) and Idsat, without DIBL effect over full operating Vds range and scalable breakdown voltage capability on both N-ch and P-ch JFET. The significant advantage of a HV JFET compared to depletion MOSFET is the lower area consumption in real circuit design which due to higher Idsat values at Vgs=0V.


More
Published: January 2013

The XT018 series is X-FAB’s 0.18 micron Modular High-voltage SOI CMOS Technology. Based on SOI wafers and the industrial standard single poly with up to six metal layers 0.18-micron drawn gate length process, integrated with high voltage and Non-Volatile-Memory modules, the platform is specifically designed for a new generation of cost-effective "Super Smart Power" technology; operating in temperature range of -40 to 175 °C.


More
Published: December 2012

This paper evaluates the technique used to improve the latching characteristics of the 200V n-type superjunction (SJ) LIGBT on partial SOI. The initial design latches at about 23V with forward voltage drop (VON) of 2V at 300A/cm2. The latest design shows increase of latch-up voltage close to 100V without significant expense of VON.


More
Published: November 2012

Are you challenged with having to design a device that requires bidirectional isolation and has several voltage levels integrated on a single chip without latch-up? If that is the case, you should join our upcoming webinar introducing XT018, the world’s first trench-isolated SOI (silicon on insulator) foundry technology offering for 200V MOS capability at 180nm. The presentation covers the general benefits and trade-offs of using SOI technology vs. a silicon bulk process. It highlights features such as super-junction architecture for 100V to 200V devices with complete dielectric isolation, the possibility to apply defined handle wafer potentials, and a highly flexible modular approach for selecting specific technology features that meet your exact needs.


More
Published: October 2012

This paper presents a comparison between the superjunction LIGBT and the LDMOSFET in partial silicon-on-insulator (PSOI) technology in 0.18µm PSOIHV process. The superjunction drift region helps in achieving uniform electric field distribution in both structres but also contributes to the on-state current in the LIGBT.


More
Published: September 2012

Ever been stuck with the “one product, one process” rule when what you really needed was access to a world-class quality process for multiple applications? Not anymore.
X-FAB is presenting a webinar on its open-platform MEMS inertial sensor processes including its new 3D inertial sensor technology. Learn how you can use X-FAB’s design partner, MicroMountains Applications, or apply your own design to X-FAB’s ready-to-use processes to run high or low wafer volumes without long and costly process development. Find out how X-FAB can help you get to market faster and secure high-quality manufacturing for inertial sensors. You’ll get an overview of both inertial sensor technologies and IP blocks from X-FAB, as well as design and test support from MicroMountains Applications.


More
Published: June 2012

This paper demonstrates and discusses novel “three dimensional” silicon based junction isolation/termination solutions suitable for high density ultra-low-resistance Lateral Super-Junction structures.


More