30 entries, filtered by: Anja Noack
Published: October 2013

Is there magic that makes analog designs successful? How can designs achieve ESD (electro-static discharge) specifications? Do DFM methods make designs more robust? This webinar answers these questions and provides tips & tricks for analog design.


More
Published: September 2013

Showing first-time-right performance statistics from X-FAB's customer base, this first session outlines the challenges involved in achieving first-time-right analog designs. It talks about what impact the choice of process architecture makes, and discusses the pros and cons of different process architectures including SOI and BCD.


More
Published: April 2013

In this paper a modified MEMS foundry process allowing the production of 3D inertial sensors, such as accelerometers, gyroscopes and combinations, is introduced. The new MEMS process is suitable for a wide range of applications that use 3D accelerometers or gyroscopes. One-axis and three-axis designs can be produced with the same process, and the fabrication of complex inertial measurement units, in particular, the assembly process, is simplified.


More
Published: March 2013

Everyone agrees that developing an IC is a challenging process with multiple trade-offs. You have to balance performance, size and cost requirements to decide how best to integrate customized memories. It’s fairly straightforward for ROM and RAM volatile memories because of well-established compiler solutions. But non-volatile memories (NVM) for trimming, data storage and programming require special consideration. X-FAB makes customizing complex embedded NVM solutions (such as EEPROM, OTP and NVSRAM) fast, easy and with minimal risks for errors. This webinar includes a live demo of an NVM compiler for NVRAM often used for data storage. You’ll see how easy and fast it is to customize your memory block design using the front-end design data (black box layout, a simulation model, a datasheet and a test specification) you receive from X-FAB within minutes via e-mail.


More
Published: October 2012

State of the art polymer strippers were identified and successfully evaluated as interesting alternatives as CMOS-compatible wet activations for semiconductor wafer direct bonding processes, including both high and low temperature annealing for bond interface strengthening. The polymer strippers achieve both excellent surface cleaning and wafer bonding activation by hydrophilization and are therefore a very interesting alternative as semiconductor direct wafer bonding pre-treatment.


More
Published: October 2012

Hermetic sealing is important regarding functionality and reliability for MEMS components. Typically this sealing is done on the wafer level using wafer bonding which simultaneously also provides mechanical protective caps. However, inner pressure and hermeticity testing and monitoring a still a critical issue; therefore, in this paper a test structure adapted to a MEMS foundry process for inertial sensors is introduced.


More
Published: September 2012

Ever been stuck with the “one product, one process” rule when what you really needed was access to a world-class quality process for multiple applications? Not anymore.
X-FAB is presenting a webinar on its open-platform MEMS inertial sensor processes including its new 3D inertial sensor technology. Learn how you can use X-FAB’s design partner, MicroMountains Applications, or apply your own design to X-FAB’s ready-to-use processes to run high or low wafer volumes without long and costly process development. Find out how X-FAB can help you get to market faster and secure high-quality manufacturing for inertial sensors. You’ll get an overview of both inertial sensor technologies and IP blocks from X-FAB, as well as design and test support from MicroMountains Applications.


More
Published: June 2012

Sensors are everywhere, serving as an interface between our analog world and the digital world of data processing in electronic systems. Is your design challenge – making sensor output signals available to complex digital systems – further complicated by the need for low noise, temperature-dependent behavior and non-linear effects? If you are looking for solutions for low noise amplification and temperature drift, non-linearity or signal offset compensation, don’t miss this free webinar. It helps designers select the right technology for low-noise and high-precision sensor interfaces. You’ll get tips for achieving excellent matching for robust circuits, and see how X-FAB’s sophisticated modelling enables first-time-right analog and mixed-signal designs.


More
Published: May 2012

Overwhelmed by the complexity of 700V designs due to cross talk, ESD, reliability or latch-up issues? Are your design challenges compounded by chip size and time-to-market issues? This webinar showcases X-FAB's new CMOS-based process for ultra-high-voltage apps such as AC LED lighting, ultra-low standby/no-load power and other power conversion and control applications. The combination of this cost-competitive process architecture and X-FAB’s design support enables first-time-right/first time functional designs for high-voltage lighting and power supply applications


More
Published: March 2012

Electrostatic discharge (ESD) is a serious threat to integrated circuits (ICs) that can cause irreversible damage. This webinar on ESD protection will show you solutions on how to eliminate ESD threats in complex analog/mixed-signal and high-voltage designs. It covers an overview of various ESD protection concepts, and explains the structures and schemes available to protect against electrostatic discharge in X-FAB’s enhanced 0.35 and 0.18 micrometer XH035 and XH018 high-voltage foundry processes. The webinar presentation also highlights similarities and differences among ESD protection concepts, outlining the advantages and disadvantages of each in circuit designs.


More