21 entries, filtered by: MEMS
Published: April 2013

In this paper a modified MEMS foundry process allowing the production of 3D inertial sensors, such as accelerometers, gyroscopes and combinations, is introduced. The new MEMS process is suitable for a wide range of applications that use 3D accelerometers or gyroscopes. One-axis and three-axis designs can be produced with the same process, and the fabrication of complex inertial measurement units, in particular, the assembly process, is simplified.


More
Published: October 2012

Hermetic sealing is important regarding functionality and reliability for MEMS components. Typically this sealing is done on the wafer level using wafer bonding which simultaneously also provides mechanical protective caps. However, inner pressure and hermeticity testing and monitoring a still a critical issue; therefore, in this paper a test structure adapted to a MEMS foundry process for inertial sensors is introduced.


More
Published: October 2012

State of the art polymer strippers were identified and successfully evaluated as interesting alternatives as CMOS-compatible wet activations for semiconductor wafer direct bonding processes, including both high and low temperature annealing for bond interface strengthening. The polymer strippers achieve both excellent surface cleaning and wafer bonding activation by hydrophilization and are therefore a very interesting alternative as semiconductor direct wafer bonding pre-treatment.


More
Published: February 2012

Moore’s law has been a strong influence on mainstream microelectronics over the past few decades, where the trends of decreasing feature size and increasing transistor count have driven the semiconductor industry forward. This philosophy has worked very well for memories and microprocessors in the digital world. Additional analog functions, by interfacing with the physical world, enable cost-optimized and value-added system solutions.


More
Published: March 2012

X-FAB, a pure play foundry, has already extensive experience in volume production of monolithic integrated MEMS devices. The idea of combining CMOS and MEMS processes to obtain monolithic integrated sensor solutions is a logical, consequent step following the “More than Moore” strategy.


More
Published: December 2011

Based on specific technology flows, various surface layers are bonded by glass frit wafer bonding. In this paper, the behaviour of typical layers, such as TEOS, Nitride and thermal oxide, and their effect on the bonding results are introduced.


More
Published: June 2011

In this paper, micromachined acceleration sensors as ready-to-use Intellectual-Property-Blocks (IP-Blocks) are introduced. These standard elements are available for a special surface micromachining foundry technology. They are ready to use, characterized and qualified design elements, which can be customized by changing the peripheral elements such as bond pads, and allow the fast prototyping and production start of high-performance inertial sensors.


More
Published: October 2009

In this paper we describe a novel tool for modeling the fabrication of MEMS and semiconductor devices, and show some examples of its application in the MEMS foundry business. The tool allows an accurate visualization of the step-by-step crreation of the final 3-D device geometry by using the 2-D layout and a description of the fabrication process.


More
Published: September 2007

Using silicon-based MEMS technologies, the cost-efficient production of gyroscopes has become possible in recent years. As a result, gyroscopes are entering new markets, such as for highly accurate GPS-Instruments where the gyroscope enhances accuracy in situations where satellite reception is lost, for example in tunnels. However, since all gyroscopes are very precise resonating measurement devices, this leads to stringent wafer processing requirements for their production.


More
Published: March 2007

MEMS, such as surface micromachined inertial sensors, require cap wafer bonding to protect the sensitive structures at the wafer level against mechanical damage and environmental influences, in order to allow the finalization of the wafer processing, dicing and packaging. In most cases, the cap is solely for mechanical protection without any electrical function, because standard wafer bonding processes cannot provide the possibility of local electrical contacts from system to cap wafer (glass frit, adhesive and low temperature direct bonding are nonconductive, while the metal interlayer bonding bond frame is a large, dominating contact area).


More